Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications
نویسندگان
چکیده
This paper describes an advanced multi-scale weather modeling system, WRF–RTFDDA–LES, designed to simulate synoptic scale ( 2000 km) to smalland micro-scale ( 100 m) circulations of real weather in wind farms on simultaneous nested grids. This modeling system is built upon the National Center for Atmospheric Research (NCAR) community Weather Research and Forecasting (WRF) model. WRF has been enhanced with the NCAR Real-Time Four-Dimensional Data Assimilation (RTFDDA) capability. FDDA is an effective data assimilation algorithm, which is capable of assimilating diverse weather measurements on model grids and seamlessly providing realistic mesoscale weather forcing to drive a large eddy simulation (LES) model within the WRF framework. The WRF based RTFDDA LES modeling capability is referred to as WRF–RTFDDA–LES. In this study, WRF–RTFDDA–LES is employed to simulate real weather in a major wind farm located in northern Colorado with six nested domains. The grid sizes of the nested domains are 30, 10, 3.3, 1.1, 0.370 and 0.123 km, respectively. The model results are compared with wind–farm anemometer measurements and are found to capture many intra-farm wind features and microscale flows. Additional experiments are conducted to investigate the impacts of subgrid scale (SGS) mixing parameters and nesting approaches. This study demonstrates that the WRF–RTFDDA–LES system is a valuable tool for simulating real world microscale weather flows and for development of future real-time forecasting system, although further LES modeling refinements, such as adaptive SGS mixing parameterization and wall-effect modeling, are highly desired. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Generation Scheduling in Large-Scale Power Systems with Wind Farms Using MICA
The growth in demand for electric power and the rapid increase in fuel costs, in whole of theworld need to discover new energy resources for electricity production. Among of the nonconventionalresources, wind and solar energy, is known as the most promising deviceselectricity production in the future. In this thesis, we study follows to long-term generationscheduling of power systems in the pre...
متن کاملSecurity-Constrained Unit Commitment Considering Large-Scale Compressed Air Energy Storage (CAES) Integrated With Wind Power Generation
Environmental concerns and depletion of nonrenewable resources has made great interest towards renewable energy resources. Cleanness and high potential are factors that caused fast growth of wind energy. However, the stochastic nature of wind energy makes the presence of energy storage systems (ESS) in wind integrated power systems, inevitable. Due to capability of being used in large-scale sys...
متن کاملMulti Objective Scheduling of Utility-scale Energy Storages and Demand Response Programs Portfolio for Grid Integration of Wind Power
Increasing the penetration of variable wind generation in power systems has created some new challenges in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy storages (ESs) are known as two powerful flexible tools that ca...
متن کاملModeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region
In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...
متن کاملNUMERICAL AND EXPERIMENTAL INVESTIGATION OF WIND PRESSURE COEFFICIENTS ON SCALLOP DOME
The wind loads considerably influence lightweight spatial structures. An example of spatial structures is scallop domes that contain various configurations and forms and the wind impact on a scallop dome is more complex due to its additional curvature. In our work, the wind pressure coefficient (Cp ) on the scallop dome surface is studied numerically and experimentally. Firstly, the programming...
متن کامل